Экосистема растений и животных. Экосистема растений и животных Значение абиотических компонентов

Экосистема - система жизни различных организмов. В это обширное понятие входит и место обитания и система связей и способы выживания всех существ.

Роль растений в экосистеме

Растения играют огромную роль в любой экосистеме. Они являются неотъемлемым звеном в любой пищевой цепочке. Насыщаясь во время своего роста энергией солнечного света, они передают ее другим видам животного и растительного мира. Например, травоядное животное питается насыщенными энергией растениями, но служат пищей для хищных представителей. Поэтому, исчезновение любой растительности пагубно скажется на всех живых представителях.

Кроме этого, именно растения выделяют необходимый для жизни кислород и избавляют мир от углекислого газа. Вырабатываемый растениями кислород защищает планету от ультрафиолетовых лучей.

Также растения играют большую роль в становлении климата в любой точке мира.

Не стоит забывать о том, что именно растения служат убежищем для многих представителей животного мира, грибов, лишайников. Они являются экосистемами для некоторых организмов.

Растительный мир является основополагающим звеном в почвообразовании, изменении ландшафтов и круговороте минеральных веществ.

Человек является одним потребителей продуктов, вырабатываемых растениями. Людям необходим свежий воздух, кислород, пища, а без флоры это невозможно получить.

Флора нашей планеты крайне важна для человечества. Растения являются нашей пищей и лекарствами. Без растительного мира человек бы не смог заниматься сельскохозяйственной деятельностью. Мировая экономика также не смогла бы существовать без них, ведь именно растения являются причиной появления угля, нефти, торфа и газа.

Роль животных в экосистеме

Животные, как и растения являются важной частью круговорота веществ. Помимо того, что они потребляют растительность или охотятся на травоядных, создавая пищевую цепочку, многие являются природными санитарами - потребляют мертвые органические вещества.

Хищные животные играют огромную роль в различных экосистемах. Благодаря им на планете существует некое равновесие популяций всех видов животного мира.

Травоядные животные также важны для всех экосистем планеты - они отвечают за плотность растительных популяций, избавляют мир от вредоносных и сорняковых растений.

Многие животные разносят пыльцу и семена - насекомые, птицы и млекопитающие.

Благодаря животным, имеющим твердый скелет, мы можем пользоваться различными осадочными породами - мелом, известняком, кремнеземом и другими.

Для человеческой экосистемы животные также важны. Во-первых, они являются основным источником пищи. Во-вторых, люди используют животные материалы для пошивки одежды, создания мебели и необходимых вещей.

Некоторые животные используются человеком, как способ избавления от вредителей. Как правило, вредители уничтожаются и химическими способами, при этом человек не задумывается о последствиях масштабного уничтожения тех или иных видов живых существ. Ведь каждый вид важен для окружающего мира, пусть он и приносит немало хлопот.

Взаимосвязь растений и животных

Взаимосвязь растений и животных очень велика. Как было сказано выше, эти экосистемы не смогут существовать друг без друга, ведь они являются регуляторами популяций обоих миров.

Эта связь начала образовываться в момент появление всего живого на планете, именно поэтому невозможно представить природу без одного из этих звеньев.

Для того, чтобы разобраться в чем именно заключается взаимосвязь растений и животных, можно разобрать всего несколько примеров. Например, муравьи живут внутри дерева, а взамен защищают это растение от вредоносных особей. А крылатые насекомые разносят цветочную пыльцу, взамен получая питание. Птицы оберегают деревья от разрушающих стволы гусениц, при этом также получают запасы питания.

Взаимосвязь со стороны растительного мира также проста - растения вырабатывают кислород, без которого все живое просто не смогло бы существовать.

В состав экосистемы входят живые организмы (их совокупность назвается биоценозом , или биотой, экосистемы), факторы неживой природы (абиотические) – атмосфера, вода, питательные элементы, свет и мертвое органическое вещество – детрит .

Все живые организмы по способу питания (по функциональной роли) разделяются на две группы – автотрофов (от греческих слов аутос – сам и трофо – питание) и гетеротрофов (от греческого слова гетерос - другой).

Автотрофы . Эти организмы для синтеза органического вещества используют неорганический углерод, это – продуценты экосистемы. По используемому источнику энергии они, в свою очередь, также делятся на две группы.

Фотоавтотрофы используют свет. Это зеленые растения, цианобактерии, а также многие окрашенные бактерии, имеющие хлорофилл (и другие пигменты) и усваивающие солнечную энергию. Процесс, при котором происходит ее усвоение, называется фотосинтезом.

Хемоавтотрофы используют химическую энергию окисления неорганических веществ (серы, сероводорода, аммиака, железа и др.). Это серобактерии, водородобактерии, железобактерии, нитрифицирующие бактерии и др. Хемоавтотрофы играют главную роль в экосистемах подземных вод, а также в особых экосистемах рифтовых зон дна океана, где из разломов плит выделяется сероводород, который окисляют серобактерии. В наземных экосистемах существенную роль играют роль нитрифицирующие бактерии.

Гетеротрофы. Эти организмы питаются готовыми органическими веществами, которые синтезированы продуцентами, и вместе с этими веществами получают энергию. Гетеротрофы в экосистеме являются консументами (от латинского слова консумо – потребляю), потребляющими органическое вещество, и редуцентами , разлагающими его до простых соединений. Существует несколько групп консументов.

Фитофаги (растительноядные). К ним относятся животные, которые питаются живыми растениями. Среди фитофагов есть и небольшие организмы, такие, как тля или кузнечик, и гиганты, такие, как слон. Фитофагами являются почти все сельскохозяйственные животные: корова, лошадь, овца, кролик. Главные фитофаги в водных экосистемах – это микроскопические организмы растительноядного планктона, питающиеся водорослями. Есть в этих экосистемах и крупные фитофаги, например, рыба белый амур, поедающий растения, которыми зарастают оросительные каналы. Важный фитофаг – бобр. Он питается ветками деревьев, а из стволов сооружает плотины, регулирующие водный режим территории.

Зоофаги (хищники, плотоядные). Зоофаги очень разнообразны. Это и мелкие животные, питающиеся амебами, червями или рачками. И крупные, такие, как волк. Хищники, питающиеся более мелкими хищниками, называются хищниками второго порядка. В водных экосистемах широко распространены зоофаги-фильтраторы , в составе этой группы – и микроскопические рачки и кит. Фильтраторы играют огромную роль в самоочищении загрязненных вод (рис. 30). Только планктонные морские веслоногие раки из рода каланус за несколько лет способны профильтровать воды всего Мирового океана!


Есть растения-хищники (росянка, пузырчатка), которые используют в пищу насекомых. Правда, их способ питания отличается от хищников-животных. Они «ловят» мелких насекомых, но не заглатывают их, а «переваривают», выделяя ферменты на свою поверхность. Есть хищники и среди почвенных грибов, которые «ловят» микроскопических круглых червей-нематод.

Симбиотрофы. Это бактерии и грибы, которые питаются корневыми выделениями растений. Симбиотрофы очень важны для жизни экосистемы. Нити грибов, опутывающие корни растений, помогают всасыванию воды и минеральных веществ. Бактерии-симбиотрофы усваивают газообразный азот из атмосферы и связывают его в доступные растениям соединения (аммиак, нитраты). Этот азот называется биологическим (в отличие от азота минеральных удобрений).

К симбиотрофам относятся и микроорганизмы (бактерии, одноклеточные животные), которые обитают в пищеварительном тракте животных-фитофагов и помогают им переваривать пищу. Такие животные, как корова, без помощи симбиотрофов не способны переварить поедаемую траву.

Детритофаги – организмы, питающиеся мертвым органическим веществом. Это многоножки, дождевые черви, жуки-навозники, раки, крабы, шакалы и многие другие. Значительное разнообразие видов-детритофагов связано с почвой. Многочисленны детритофаги, разрушающие древесину (рис. 31).

Организмы, которые питаются экскрементами, называются копрофагами . Некоторые организмы используют в пищу как растения, так и животных и даже детрит и относятся к эврифагам (всеядным) – медведь, лиса, свинья, крыса, курица, ворона, тараканы. Эврифагом является и человек.

Редуценты – организмы, которые по своему положению в экосистеме близки к детритофагам, так как они тоже питаются мертвым органическим веществом. Однако редуценты – бактерии и грибы – разрушают органические вещества до минеральных соединений, которые возвращаются в почвенный раствор и снова используются растениями.

Для переработки мертвого органического вещества редуцентам нужно время. Поэтому в экосистеме всегда есть запас этого вещества – детрит. Детрит – это опад листьев на поверхности лесной почвы (сохраняется 2–3 года), ствол упавшего дерева (сохраняется 5–10 лет), гумус почвы (сохраняется сотни лет), отложения органического вещества на дне озера – сапропель и торф на болоте (сохраняется тысячи лет). Наиболее долго сохраняющимся детритом являются каменный уголь и нефть.

Продуценты, фитофаги, хищники связаны в процессе «работы» экосистемы, то есть усвоении и расходовании энергии при производстве органического вещества и как бы участвуют в «эстафете» передачи энергии. Номер участника «эстафеты» – это его трофический уровень . Первый трофический уровень – продуценты, второй – фитофаги, третий – хищники первого порядка, четвертый – хищники второго порядка. В некоторых экосистемах, например в озере, количество трофических уровней может достигать 5-6.

На рис. 32 показана структура экосистемы, основу которой составляют растения – фотоавтотрофы, а в табл. 1 приведены примеры представителей разных трофических групп для некоторых экосистем.

Таблица 1

Представители разных трофических групп в некоторых экосистемах

Экосистема — это функциональное единство живых организмов и среды их обитания. Основные характерные особенности экосистемы — ее безразмерность и безранговость. Замещение одних биоценозов другими в течение длительного периода времени называется сукцессией. Сукцессия, протекающая на вновь образовавшемся субстрате, называется первичной. Сукцессия на территории, уже занятой растительностью, называется вторичной.

Единицей классификации экосистем является биом — природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных.

Особая экосистема — биогеоценоз — участок земной поверхности с однородными природными явлениями. Составными частями биогеоценоза являются климатоп, эдафотоп, гидротоп (биотоп), а также фитоценоз, зооценоз и микробоценоз (биоценоз).

С целью получения продуктов питания человек искусственно создает агроэкосистемы. Они отличаются от естественных малой устойчивостью и стабильностью, однако более высокой продуктивностью.

Экосистемы — основные структурные единицы биосферы

Экологическая система, или экосистема, — основная функциональная единица в экологии, так как в нее входят организмы и

неживая среда — компоненты, взаимно влияющие на свойства друг друга, и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Термин экосистема впервые был предложен в 1935 г. английским экологом А. Тенсли.

Таким образом, под экосистемой понимается совокупность живых организмов (сообществ) и среды их обитания, образующих благодаря круговороту веществ, устойчивую систему жизни.

Сообщества организмов связаны с неорганической средой теснейшими материально- энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода.

В любом конкретном месте обитания запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков.

Следовательно, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Рис. 8.1. Структура биогеоценоза и схема взаимодействия между компонентами

В отечественной литературе широко применяется термин «биогеоценоз», предложенный в 1940 г.B . Н Сукачевым. По его определению, биогеоценоз — «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии».

В биогеоценозе В.Н. Сукачев выделял два блока: экотоп — совокупность условий абиотической среды и биоценоз — совокупность всех живых организмов (рис. 8.1). Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп — как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов.

Существует мнение, что термин «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается, прежде всего, ее функциональная сущность. Фактически же между этими терминами различий нет.

Следует указать, что совокупность специфического физико-хи- мического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему:

Экосистема = Биотоп + Биоценоз.

Равновесное (устойчивое) состояние экосистемы обеспечивается на основе круговоротов веществ (см. п. 1.5). В этих круговоротах непосредственно участвуют все составные части экосистем.

Для поддержания круговорота веществ в экосистеме необходимо наличие запаса неорганических веществ в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений (рис. 8.2).

Рис. 8.2. Продуценты

Консументы - гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов в течение жизни, выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена — консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе весьма различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т.е. многократность вовлечения одних и тех же элементов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, озера и т.п.).

Экосистема — практически замкнутая система. В этом состоит принципиальное отличие экосистем от сообществ и популяций, являющиеся открытыми системами, обменивающимися со средой обитания энергией, веществом и информацией.

Однако ни одна экосистема Земли не имеет полностью замкнутого круговорота, поскольку минимальный обмен массой со средой обитания все-таки происходит.

Экосистема является совокупностью взаимосвязанных энергопотребителей, совершающих работу по поддержанию ее неравновесного состояния относительно среды обитания за счет использования потока солнечной энергии.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Экосистемная организация жизни является одним из необходимых условий ее существования. Как уже отмечалось, запасы биогенных элементов, необходимых для жизни организмов на Земле в целом и на каждом конкретном участке на ее поверхности, небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни.

Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы — древнейшее свойство жизни.

С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Концепция экосистемы

Основным объектом изучения экологии являются экологические системы, или экосистемы. Экосистема занимает следующее после биоценоза место в системе уровней живой природы. Говоря о биоценозе, мы имели в виду только живые организмы. Если же рассматривать живые организмы (биоценоз) в совокупности с факторами окружающей среды, то это уже экосистема. Таким образом, экосистема — природный комплекс (биокосная система), образованный живыми организмами (биоценоз) и средой их обитания (например, атмосфера — косной, почва, водоем — биокосной и т.д.), связанными между собой обменом веществ и энергии.

Общепринятый в экологии термин «экосистема» ввел в 1935 г. английский ботаник А. Тенсли. Он считал, что экосистемы, «с точки зрения эколога представляют собой основные природные единицы на поверхности земли», в которые входит «не только комплекс организмов, но и весь комплекс физических факторов, образующих то, что мы называем средой биома, — факторы местообитания в самом широком смысле». Тенсли подчеркивал, что для экосистем характерен разного рода обмен веществ не только между организмами, но и между органическим и неорганическим веществом. Это не только комплекс живых организмов, но и сочетание физических факторов.

Экосистема (экологическая система) — основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания, любая совокупность совместно обитающих живых организмов и условий их существования (рис. 8).

Рис. 8. Различные экосистемы: а — пруда средней полосы (1 — фитопланктон; 2 — зоопланктон; 3 — жуки-плавунцы (личинки и взрослые особи); 4- молодые карпы; 5 — щуки; 6 — личинки хорономид (комаров-дергунцов); 7- бактерии; 8 — насекомые прибрежной растительности; б — луга (I — абиотические вещества, т.е. основные неорганические и органические слагаемые); II- продуценты (растительность); III- макроконсументы (животные): А — травоядные (кобылки, полевые мыши и т.д.); В — косвенные или питающиеся детритом консументы, или сапробы (почвенные беспозвоночные); С- «верховые» хищники (ястребы); IV- разлагатели (гнилостные бактерии и грибы)

Понятие «экосистема» можно применить к объектам различной степени сложности и величины. Примером экосистемы может служить тропический лес в определенном месте и в конкретный момент времени, населенный тысячами видов живущих вместе растений, животных и микробов и связанный происходящими между ними взаимодействиями. Экосистемами являются такие природные образования, как океан, море, озеро, луг, болото. Экосистемой может быть кочка на болоте и гниющее дерево в лесу с живущими на них и в них организмами, муравейник с муравьями. Самой большой экосистемой является планета Земля.

Каждая экосистема может характеризоваться определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» безранговое. Она обладает признаком безразмерности, ей не свойственны территориальные ограничения. Обычно экосистемы разграничиваются элементами абиотической среды, например рельефом, видовым разнообразием, физико-химическими и трофическими условиями и т.н. Размер экосистем не может быть выражен в физических единицах измерения (площадь, длина, объем и т.д.). Он выражается системной мерой, учитывающей процессы обмена веществ и энергии. Поэтому под экосистемой обычно понимают совокупность компонентов биотической (живые организмы) и абиотической среды, при взаимодействии которых происходит более или менее полный биотический круговорот, в котором участвуют продуценты, консументы и редуценты. Термин «экосистема» применяется и по отношению к искусственным образованиям, например экосистема парка, сельскохозяйственная экосистема (агроэкосистема).

Экосистемы можно разделить на микроэкосистемы (дерево в лесу, прибрежные заросли водных растений), мезоэкосистемы (болото, сосновый лес, ржаное поле) и макроэкосистемы (океан, море, пустыня).

О равновесии в экосистемах

Равновесными называются такие экосистемы, которые «контролируют» концентрации биогенов, поддерживая их равновесие с твердыми фазами. Твердые же фазы (остатками живых организмов) являются продуктами жизнедеятельности биоты. Равновесными будут и те сообщества и популяции, которые входят в равновесную экосистему. Такой вид биологического равновесия называется подвижным , поскольку процессы отмирания непрерывно компенсируются появлением новых организмов.

Равновесные экосистемы подчиняются принципу устойчивости Лe Шателье. Следовательно, эти экосистемы обладают гомеоста- зом, — иными словами, способны минимизировать внешнее воздействие при сохранении внутреннего равновесия. Устойчивость экосистем достигается не смещением химических равновесий, а путем изменения скоростей синтеза и разложения биогенов.

Особый интерес представляет способ поддержания устойчивости экосистем, основанный на вовлечении в биологический круговорот органического веществ, ранее произведенного экосистемой и отложенного «про запас» — древесины и мортмассы (торф, гумус, подстилка). В этом случае древесина служит как бы индивидуальным материальным богатством, а мортмасса — коллективным, принадлежащим экосистеме в целом. Это «материальное богатство» увеличивает запас устойчивости экосистем, обеспечивая их выживание при неблагоприятных изменениях климата, стихийных бедствиях и др.

Устойчивость экосистемы тем больше, чем больше она по размеру и чем богаче и разнообразнее ее видовой и популяционный состав.

Экосистемы разного типа используют различные варианты индивидуальных и коллективных способов запасания устойчивости при различном соотношении индивидуального и коллективного материального богатства.

Таким образом, основная функция совокупности живых существ (сообщества), входящих в экосистему, — обеспечить равновесное (устойчивое) состояние экосистемы на основе замкнутого круговорота веществ.

Грибы в природе

Размышляя о том, важную ли роль в экосистеме играют грибы, я понял, что такой вопрос задавать не корректно. В природе важно все. В ботанике есть раздел микология , он изучает грибы . Согласно этой науке, грибы давно уже выведены в индивидуальное царство. То есть существует царство растений и отдельно – царство грибов . Главной своеобразностью грибов является то, что структурный углевод в их составе - хитин . Он также входит в состав внешнего скелета насекомых. Хитин обладает любопытными свойствами, одним из них является свойство выводить из организма вредные вещества. В то же время из-за него грибы принято считать тяжелой пищей .

Роль грибов в экосистеме

Одна из главных их функций – разложение и переработка органических остатков . В результате биодеструкции мертвых растительных и живых организмов в природу возвращается углерод и минеральные вещества. Грибы принимают участие в процессах почвообразования , воздействуют на состав почв, их структуру и даже на температуру.

Классификация грибов

По образу существования и способу питания грибы делят на:

Знакомый нам мир грибов составляет мизерную часть от существующего в мире разнообразия их видов. Они везде - в детских рисунках и кулинарных книгах, учебниках по медицине. Грибы для человека могут быть вкусной едой и смертельной отравой, способны лечить заболевания, спасать и уничтожать урожаи. Из грибков пенициллина в медицину пришли антибиотики. На сегодняшний день их всё больше используют для усиления иммунитета, борьбы с онкологией (трутовик лакированный, шиитаке и др.). Такие они, наши невидимые и видимые, нужные и вредные соседи.

Если заговорить о грибах, первое, что приходит в голову - осенний лес, тихая охота. Еще можно вспомнить про дрожжи, сыр с плесенью и пенициллин. А вот о том, какую роль в экосистеме играют грибы, зачем они нужны природе, мало кто задумывается. Давайте поговорим об этом.

Вред или польза?

Говорят, что если положить на одну чашу весов пользу, которую человек получает от этих организмов, а на другую - их вред, чаши уравновесятся. Хотя, рассуждая о том, какую роль в экосистеме играют грибы, так ставить вопрос нельзя. Природе важно и нужно все.

Изучающая грибы наука микология считается одним из разделов ботаники. Но грибы давно уже выделены в отдельное царство. То есть существует и отдельно - царство грибов.

Одной из главных особенностей является то, что структурный углевод в составе клеточной стенки этих организмов - хитин. Он же является составной частью наружного скелета насекомых, членистоногих. Хитин обладает интересными свойствами, одно из которых - способность выводить из организма человека вредные вещества, уменьшать содержание холестерина. В то же время из-за него грибы считаются тяжелой пищей. Детям до 6-7 лет их лучше не давать, кормящим матерям тоже лучше не есть их. Ферментная система ребенка может не справиться с таким продуктом.

Зачем природе нужны грибы?

Одна из основных их функций - разложение, переработка органических остатков. В результате биодеструкции погибших растительных и животных организмов в природный круговорот возвращаются углерод и минеральные вещества.

Грибы участвуют в процессах почвообразования, влияют на их структуру, состав и даже температурный режим. Ведь при гниении повышается температура разлагающихся остатков. Это хорошо известно огородникам, выращивающим овощи на теплых грядках.

Грибы в процессе своей жизнедеятельности создают биомассу из мицелия и плодовых тел (то, что мы с детства знаем как мухоморы, сыроежки, подберезовики и др.). Ими питаются не только люди, но также насекомые и различные животные.

Грибокорень

Неоценимо значение грибов в создании микоризы. Оказывается, грибы не только разрушают деревья, но могут быть полезными для них. В природе широко распространено явление симбиоза - выгодного для обоих организмов сосуществования.

Микоризу образует ассоциация из нитей мицелия и корней деревьев. Гриб получает от высшего растения питательные вещества в доступной форме и, в свою очередь, помогает ему добывать воду и фосфор из почвы. У дерева фактически появляются дополнительные корни.

Микориза может быть внешней, окружающей корни, а также может проникать внутрь. Между клетками двух организмов идет активный обмен веществ. Какую роль в экосистеме играют грибы в данном случае? Жизнь леса просто невозможна без них, особенно в засушливых областях.

На грани выживания

В местах, где климат суров и растительность очень скудная, грибы образуют симбиотические сообщества не с деревьями, а с водорослями, известные как лишайники. Их можно встретить в тундре и пустыне, на скалах, зданиях, коре деревьев - там, где, казалось бы, для жизни условий нет. Но грибы добывают воду даже из воздуха, из росы, а водоросль преобразует на свету углекислый газ в органическое питание для обоих.

Обживание новых пространств, наработка в этих местах органики - таково еще одно значение грибов в природе.

Грибы-хищники

По образу жизни и способу питания грибы подразделяют на:

На навозных кучах живут грибы-копрофилы, на пожарищах - карбофилы.

А еще некоторые грибы способны «охотиться». Их добычей могут быть амебы, насекомые, нематоды. Нити гриба прилипают к жертве, окутывают слизью, некоторые даже способны задушить ее, затем прорастают внутрь и питаются ею. Это еще один пример того, какую роль в экосистеме играют грибы.

Огромный и многоликий

Видимый для человека мир грибов составляет крошечную часть от существующего многообразия их видов. Грибы, фото и названия которых знакомы с детства, - это мухомор, белый, опенок, сыроежка, и многие другие. Они - в детских раскрасках и кулинарных книгах, справочниках по неотложной медицине и учебниках фармакологии. Грибы для человека могут быть изысканной пищей и смертельной отравой, способны лечить и вызывать болезни, спасать и губить урожай, делать непригодным жилье.

С грибов началась эра антибиотиков в медицине. Сейчас все больше подтверждений находит использование для поднятия иммунитета, борьбы с онкологическими заболеваниями кордицепса, шиитаке и др.

Такие они, наши видимые и невидимые, нужные и опасные соседи.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.